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Step-induced separation of a turbulent boundary layer 
in incompressible flow 

By P. BRADSHAW AND P. V. GALEA 
Aerodynamics Division, National Physical Laboratory 

(Received 4 August 1965 and in revised form 13 May 1966) 

Measurements of the low-speed flow up a step of height equal to 1.75 times the 
initial boundary-layer thickness show that the flow satisfies Stratford’s (1959) 
condition for rapid separation, the extra stress gradients being confined to the 
first one-eighth of the boundary-layer thickness. The increase in turbulence 
intensity up to separation is small, and attributable to low-frequency fluctuations 
in separation position. Townsend’s (1  962) criterion predicts the separation point 
fairly accurately. A simple expression is found for the additional pressure rise 
that can be withstood by a boundary layer already fairly near separation, which 
gives tolerable results a t  any point in the flow up a step. 

1. Introduction 
The flow up a step is so frequently mentioned as the prototype of rapidly sepa- 

rating flows that it is surprising that no measurements of the boundary-layer 
development in low-speed flow are available. Lighthill (1953) apparently did 
not know of any, and, when we started this work, we were unable to find any 
published since then: in fact, the most comprehensive study was that of Head 
& Rechenberg (1962), who measured the pressure coefficient and surface shear 
stress in the course of an experiment on the reliability of surface tubes. The well- 
known work of Chapman, Kuehn & Larson (1958) was confined to pressure 
measurements and shadowgraph observations, and most of it was done at  super- 
sonic speeds, where the problem becomes one of shock-wave boundary-layer 
interaction. Partly because the shock wave dominates the flow, and partly 
because there is a direct connexion between flow angle and static pressure, the 
supersonic case does not throw much light on the low-speed flow or on low-speed 
separation in general. 

The Stratford (1954, 1959) and Townsend (1960, 1962) sequence of papers on 
the prediction of separation makes the simplifying approximation that the 
change of total pressure along streamlines in the outer part of the flow is negligible 
in the region of strong adverse pressure gradient preceding separation, i.e. 
that the effect of the stress gradients in the outer part of the initial boundary 
layer is negligible. Modified mixing-length theory and the assumption that the 
stress gradient in the inner part of the flow (the ‘equilibrium layer’) is indepen- 
dent of y, lead to the result that, in the equilibrium layer, the departure of 
Uju, from the value in a constant-stress layer, {log (u,y/v) + A } / K ,  is a certain 



112 

universal function of aylr,, where a is the stress gradient. For large enough values 
of ay/r,, this gives 
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u = - -  (ay), +u 1 ,  
KO P 

where KO is about 0-50, is independent of y and falls to practically zero at 
separation. 

The usual test cases for methods of predicting separation are those of Newrnan 
(1951), whose boundary layer almost separated, and Schubauer & Klebanoff 
(1951). The former has a very long region of adverse pressure gradient so that it is 
difficult to distinguish the phenomena characteristic of separation from the 
delayed effects of the upstream history of the boundary layer. Although the 
latter closely represents a boundary layer passing from a region of zero pressure 
gradient into a region of strong adverse pressure gradient, the distance between 
the start of the pressure gradient and the separation point is 40 times the initial 
thickness of the boundary layer or nearly half the distance from the leading 
edge to the start of the pressure gradient, so that the Stratford approximation is 
not very well satisfied. A set of measurements in a rapidly separating boundary 
layer is therefore a useful test case for the Stratford-Townsend method. 

The immediate reason for our own interest in the flow up a step is as part of 
a study of equilibrium turbulent boundary layers and their response to per- 
turbations. A change in pressure-gradient parameter from one (constant) 
value to a slightly different (constant) value is a weak perturbation, and step- 
induced separation of a boundary layer initially in equilibrium is about the 
strongest perturbation that can be imagined, and also the simplest useful case 
of separation that can be investigated. The experiment reported here, on a bound- 
ary layer initially in zero pressure gradient, was a pilot study for this work, and 
consisted principally of mean-flow measurements up to the separation point: 
no velocity profiles were measured aft of separation, since the chief object in 
making fundamental studies of separation is to learn how to avoid it. One of the 
incidental results of the work is the discovery of a very simple criterion of ‘near- 
ness to separation ’ which should be rather useful in designing bodies where the 
boundary layer remains attached. 

2. Apparatus and procedure 
The measurements were made in the boundary layer on the wall of a 

15in. x loin. open-circuit tunnel, at a speed of 3Oft./s in the empty working 
section. The Reynolds number UISl/v was 3100. The free-stream turbulence level 
was about 0.2 yo. The steps were mounted on the 15in. side of the tunnel. The 
measuring instruments were attached to 34 in. discs inserted in the tunnel wall 
a t  about 56in. from the downstream end of the contraction; the undisturbed 
boundary layer was about 1.3 in. thick. For convenience, most of the measure- 
ments were made by keeping the instruments fixed and moving the step, a time 
honoured procedure in tests at supersonic speeds, chiefly, it  must be admitted, 
at higher Reynolds numbers and lower rates of boundary-layer growth than in 
the present experiment. It is immediately clear that the difference between the 
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results obtained by moving the step, and those obtained by moving the instru- 
ments, will be small if the distance through which the step is moved is small 
compared with its distance from the origin of the boundary layer, and, in fact, 
the difference between the pressure distribution measured at  up to 18in. from 
the step was almost entirely attributable to the rather large static pressure 
gradient in the empty tunnel, about - 0.002. &U:, per in. where U,, is the speed 
in the empty tunnel at  the position of the instruments. Physically, the conse- 
quence of moving the step is to conceal the fact that the boundary layer would 
grow appreciably in the length of the region of retardation even if the step were 
not there. Thus, the effect of the stress gradients (of which &/ay is the largest) 
in the initial boundary layer is eliminated from the results, and this has the 
advantage that the effect of the extra stress gradients set up by the retardation 
can be seen more readily. The main assumption of the Stratford-Townsend 
theory, that the initial stress gradients are negligible, has therefore been made 
in the experiment as well: as mentioned above it is well satisfied. 

A more important source of error in experiments on separation is lack of two- 
dimensionality. The separation line was found to be straight over at  least the 
central two-thirds of the span of the step, but bhe only evidence that convergence 
of the flow, due to the growth of boundary layers on the side walls, was also 
negligible is that given by figure 8. This figure shows the conservation of total 
pressure along streamlines in the outer part of the flow, a direct consequence of 
the unimportance, or, in the present experiment, the suppression, of the initial 
stress gradients. Since the streamlines were calculated from the two-dimensional 
continuity equation, any convergence would have led to apparent consistent 
changes in total pressure. 

Pressures were measured with a null-reading micro-manometer (Bradshaw 
1964), and the accuracy of reading can be judged from the information that 
the maximum pressure difference measured in figure 9 was about 0.003 in. water. 
Pressures were made dimensionless by dividing by the dynamic pressure in the 
empty tunnel. 

Total-pressure and static-pressure profiles were measured with a flat Pitot 
tube 0.01 in. high, a Pitot tube 0.03 in. in diameter used where the flow direction 
was uncertain, and a disc static probe mounted in the (x, y)-plane. No corrections 
have been made for the effects of turbulence. 

Surface shear stress was measured with a Preston tube 0.115in. in diameter, 
since the pressure differences obtained with a sublayer fence were unmeasurably 
small. Head & Rechenberg’s (1962) calibration was used. Near the separation 
point, the flow near the surface will be reversed for part of the time; since the 
Preston tube measures total pressure when the flow is attached, but something 
nearer static pressure when the flow is reversed, it will indicate too high a value 
of the mean shear stress. We have used a probe like a sublayer fence of span 
roughly equal to its height (figure 2 )  to investigate the region of separation on the 
2.25 in. step only. Since a height of about 0.1 in. was needed to give a measurable 
pressure difference, the instrument is liable to indicate separation too far down- 
stream. The ‘fence’ has not been calibrated accurately, but a rough calibration 
derived by comparing the readings with Preston tube readings at  the large values 
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of x’ has been used to obtain values of surface shear stress near separation. Sepa- 
ration was indicated a t  about 2-6in. upstream of the step, or 2.7in. if a rough 
correction is made for the effects of finite height of the fence. Velocity traverses 
made with the 0-01 in. high Pitot tube indicate separation at about 2.5 in., but 
the figure of 2-7in. is the most reliable. The difference between the two is only 
about 0.15 of the initial boundary-layer thickness. In  experiments at  higher 
speeds, a conventional sublayer fence (Head & Rechenberg 1962) should be 
adequate. 

The measurements of pressure gradient shown in figure 9 were obtained from 
the difference in pressure between two static pressure tappings 0.22 in. apart, 
and are therefore averaged over this distance; the error should be negligible. 

In general, the results of this experiment are rather more scattered than normal 
boundary-layer measurements, partly because of the unsteadiness of any sepa- 
rating flow and partly because such small pressure differences had to be measured. 
The scatter in figure 4 ( b )  for (x’ > 4in.) and in figure S(a )  (for @ > 0.2in.) is 
typical. Measurements near the separation point are necessarily unreliable. 

3. Results and discussion 
3.1. Surface pressure and surface shear stress 

A few measurements of surface pressure coefficient and surface shear-stress 
coefficient, both based on the dynamic pressure in the empty tunnel ipU;,, 
were made with different ratios of step height to boundary-layer thickness 
(figures 1 and 2; note that x’ is measured upstream from the step). If this ratio is 
large enough, the pressure distribution is expected to scale on step height alone. 
Lighthill’s theory applies to this case, and it was hoped to obtain a reasonable 
approxima,tion to it with a step height of only twice the boundary-layer thickness 
on the argument that the effect of the total-pressure deficit in the outer part of 
the boundary layer should be negligible. In fact, the pressure and surface shear- 
stress distributions very nearly scale on boundary-layer thickness, irrespective 
of step height, if the x-origin is shifted upstream by 1.7 step heights in each case. 
No deep significance is claimed for this, but it does mean that only one test case 
for calculation methods can be extracted from the results. Also, any comparison 
with Lighthill’s theory would be futile. Larger ratios of step height to boundary- 
layer thickness could only have been attained by reducing the boundary-layer 
thickness and Reynolds number to unacceptably low values, or by using a step 
uncomfortably large for the tunnel. The only region of the pressure distribution 
that is of any immediate qualitative interest is the region near the separation 
point. It is noticeable that the pressure gradient decreases considerably just 
before separation because of the effect of the increasing displacement thickness 
on the external flow; the same effect occurs in the measurements of Schubauer 
& Klebanoff (1951) on an aerofoil and is commented on a t  length by Townsend 
(1 962). After separation, the pressure gradient continues to decrease and actually 
becomes negative (this is more clearly seen in figure 9); very near the step the 
pressure starts to increase rapidly again. This behaviour is consistent with the 
undoubted presence of a layer of reversed flow, emanating from the first re- 
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attachment point part way up the step, turning abruptly at  the bottom of the 
step and then being gradually re-entrained into the separated shear layer. The 
velocity of circulation, judging from the pressure rise at the foot of the step, is 
about 
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a quarter of the reference velocity in the case of the 2.25 in. step. 
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FIGURE 1. Surface pressure distributions for different step heights. The displacement 
thickness of the initial boundary layer is 0-194 in. 
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FIGURE 2. Surface shear-stress distributions for different step heights measured with a 
0-115 in. Preston tube (Head & Rechenberg 1962). x , h = 1.0; 0, h = 1.2; A, h = 1.58; 
0, h = 2.25. The inset shows the ‘fence’ and ‘fence’ readings taken near separation, 
h = 2-25in. 
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The surface shear-stress distribution is likewise what might have been ex- 
pected: the smallest values measured with the Preston tube are untrustworthy, 
but the ‘fence’ measurements, for the 2.25in. step only, show that the surface 
shear stress decreases through zero almost linearly, another indication that there 
is a strong reversed flow in the separated region. In  fact, the surface shear stress 
decreases linearly all the way from r = 6in., where it is still as high as half its 
initial value, but this does no€ seem to be a general characteristic of separating 

0 25 50 75 100 
4 dP _ _  
7, dx 

FIGURE 3. Variation of velocity-defect parameter C with pressure gradient. 

flows. The formulae of Ludwieg & Tillman (1 950), andothers, greatly overestimate 
the surface shear stress almost from the start of the adverse pressure gradient; 
they are based on data from boundary layers more nearly in equilibrium. They 
give reasonable values for the surface shear stress in Schubauer & Klebanoff’s 
experiment, but the maximum value of (S,/$pU;) (dpldx) in that experiment was 
less than half the maximum in the present work. 

The velocity-defect profile parameter, 

is plotted against the pressure-gradient parameter (&/rW) dp/dx in figure 3, 
compared with the locus of all equilibrium boundary layers according to Nash 
(1965). Clearly the boundary layer is very far from local equilibrium. 
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3.2. Measurements within the shear layer 

The 2.25 in. step was used for all the measurements of boundary-layer charac- 
teristics. The velocity profiles, in figure 4 (a )  are not particularly informative 
about the behaviour of the boundary layer because the static-pressure gradients 
normal to the surface (figure 7) are considerable-compare the values of UlU,,, at 
the total-pressure boundary with the values of (I, -pW)}&pU& in figure 7-so that 
measurements of a,, 8, and H are rather meaningless. (If H were calculated 
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FIGURE 4. Mean velocity profiles, h = 2.25in. (a )  Linear plot. ( b )  Logarithmic plot; 
_ - _ _  , (u/u:p) &jay = 0.1 (Mellor 1966) for comparison with z' = 4. ( c )  Square-root 
plot; - - -, locus of points where @ = 0.05 (approximately the edge of the equilibrium 
layer). 
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from measurements of total pressure rather than dynamic pressure the values 
would be lower so the difference between the two curves in figure 3 would be 
even larger). The use of the boundary-layer approximation implies the assump- 
tion that the static pressure is constant across the shear layer. The velocity profiles 
in the inner part of the layer are plotted against logy in figure 4(b) and against 
yt  in figure 4(c), the streamlines are shown in figure 6, and figures 8 (a )  and ( b )  
show the total pressure profiles, referred to the static pressure in the empty 
tunnel, plotted against the stream function 4. It should be noted that the 
measurements of static pressure (figure 7) for y < 0.4in. are implausible, al- 
though not to a sufficient degree to affect the velocity profiles significantly; 
a more nearly linear approach to the static pressure at the surface is expected, 
and the effect of turbulence on the static tube may be responsible. The surface 
pressures were, of course, measured at  tappings in the wall of the tunnel. 

It is seen from figure 8 ( b )  that the effect of the extra shear-stress gradients 
caused by the presence of the step is confined to the region @ < 0.05in. (Note 
once more that the effect of the initial stress gradients has been eliminated by 
moving the step. The three extra points in figure 8 (a) ,  which are to be compared 
with the circled points to the left of each, show the losses in total pressure, 
due to the initial stresses, which would have occurred between x' = 8in. and 
x' = 24in.). As can be seen from figure 6, $- < 0.05in. corresponds to about the 
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first eighth of the boundary-layer thickness; the fraction should be almost 
independent of Reynolds number. Except in this wall equilibrium layer, the 
shear-stress profile is expected to remain almost the same as in the unperturbed 
boundary layer (see also figure 2 of Townsend (1962.) The region of adverse 
pressure gradient is far too short for the shear-producing eddies in the outer part 
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FIGURE 5. Composite shear-stress profiles, using calculated gradients near the surface 
and Klebanoff’s data in the outer region. Points 0 indicate departure from square-root 
dependence of the velocity profiles (see figure 4(c)). Points @ indicate the approximate 
limit of the effect stress gradients a t  $ = 0.05 (see figure 8(b ) ) .  

of the layer to be appreciably augmented by the increased rate of turbulence 
production resulting from the increased velocity gradients. In fact the increase 
in velocity gradient is appreciable only in the outermost parts of the layer 
(figure ~ ( c c ) )  where the shear stress is small anyway. Near the wall the velocity 
gradient is reduced. In  longer regions of adverse pressure gradient, the increased 
stresses in the outer part of the layer cause an increased transfer of momentum 
towards the surface and thus delay separation. Therefore, the more rapid the 
separation the lower is the pressure rise; the extreme case of this being separation 
from a rearward-facing step and the antithesis being a retarded equilibrium 
boundary layer, which can be reduced to rest 

The velocity profile near the surface has a logarithmic region whose size 
diminishes as separation is approached. Mellor ( 1966) has calculated profiles 
for large values of the pressure-gradient parameter (vlpu?) (&lay) (which is less 
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than or equal to (v/pu:) (dpldx)) by using the ‘ mixing-length ’ relationship 
7 = pK2y2(au/ay)2 in the fully turbulent region u, y/v < 30, the effective viscosity 
for u T y / v  < 30 being chosen to reproduce the experimentally observed profile in 
zero pressure gradient. Mellor’s profile for ( v / p u ; ) ( a ~ / a y )  = 0.1 is shown in 

0 2 1  4 6 8 10 12 14 16 18 20 
Separation 

point 
x’ (in.) 

FIGURE 6. Streamlines. @ = 1.21 gives approximately the total-pressure 
boundary. 4 = 0.05 is approximately the equilibrium-layer boundary. 
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FIGURE 7. Static pressure profiles. +, z’ = 2 i ;  v, z’ = 3 ;  A, z‘ = 4;  x , 2’ = 6; 2’ = 8. 

figure 4(b) for comparison with the measurements a t  x = 4in. where (v/pu;) 
(&/ay) was also about 0.1 (taking a7/ay to  be about half dp/dx). The agreement 
is fair, bearing in mind the uncertainty of the shear gradient and the inaccuracy 
of the measurements. The profiles at x’ = 3 in. and x’ = 2g in. continue the trend 
shown by Mellor’s calculations but the values of u, are untrustworthy. It is usually 
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FIGURE 8 ( a )  Total pressure plotted against stream function; points r show the effect of 
the initial stress gradient (see text). ( b )  Total pressure plotted against stream function 
near the surface. 

X' y a t  $ = 0.05 
0 a3 0.10 
0 8 0.12 
X 6 0.14 
n 4 0.2 
v 3 0.25 
+ 2: 0.31 



122 P. Bradshaw and P. V .  Galeu 

stated that the logarithmic region vanishes for (v/pu$) (dpldx) = 0.01 - 0.04; 
the former value is reached a t  X I  = 9 in. and the latter at  X I  = 7 in., whereas the 
logarithmic region does not shrink to nothing until x‘ E Bin.; this is merely a 
confirmation that the criterion should be based on the average value of ar/ay 
rather than on dpldx, and that the difference between 
large in a rapidly retarded boundary layer because the 
large. 

The ‘mixing length’ relationship used by Mellor and 
proposed by Townsend (1961) both predict that 

the two is inevitably 
flow accelerations are 

the modification of it 

where KO is a constant equal to 0.41 (Mellor) or about 0-50 (Townsend), and U, 
is a function of r, and ar/ay, in the outer part of the wall equilibrium layer in a 
strong adverse pressure gradient. The final departure from this relation occurs a t  
a value of y where the shear-stress gradient starts to decrease appreciably; 
in the Stratford-Townsend model this point is identified with the inner edge of 
the ‘inviscid’ layer. Square-root regions are seen in the velocity profiles 
(figure 4(c)) for x’ = 3in. and X I  = 2Qin. only. There is an incipient inflexion 
in the profile a t  x’ = 4in., but it cannot be distinguished from the experimental 
scatter. The condition for a square-root region to exist is that the maximum shear 
stress in the layer shall be very large compared with the surface shear stress, 
whereas the ratio of the surface shear stress in the initial boundary layer to the 
surface shear stress at x’ = 4in. is only about 4.4. More extensive square-root 
regions appear when a boundary layer is retarded more slowly so that the shear 
stress in the central region of the layer has time to rise appreciably above the 
initial surEace shear stress. The additive constant U, decreases to a very small 
value at  x’ = 2.5 in., slightly downstream of the position of separation as indicated 
by the symmetrical surface tube. Mellor’s theoretical value for U, a t  separation 
is about 1*2((v/p) (8r18y))i or about O*OOSU,,,; the experimental value at  
x’ = 2.5in. is very roughly 0.02 Urei, but a value of O.O08U,,, or less would be 
well within the experimental accuracy. The values of ar/ay a t  X I  = 3in. and 
x’ = 2.5 in., calculated from the slopes of the velocity profiles by taking KO = 0.5, 
are shown in figure 9; it is seen that ar/ay is significantly less than dpldx even 
at  separation, but the difference between the two is more likely to  be negligible 
in the less rapid separation from an aerofoil, where the flow angles are a t  least a 
factor of two less than in the present case. The normal pressure gradient near 
the surface at X I  = 2iin. is quite small SO that the flow acceleration is pre- 
dominantly in the x-direction. 

The shear-stress profiles, constructed from the measurements of T~ and 
&/ay and Klebanoffs (1955) measurement of the shear-stress profile in a boundary 
layer in zero pressure gradient (scaled in both co-ordinates) on the assumption 
that the shear stress in the outer part of the layer is constant along streamlines, 
are shown in figure 5. The assumption that the join between the inner and outer 
layers lies on a streamline that passed through the constant-stress layer in the 
initial boundary layer is seen to be satisfied well enough for practical purposes. 
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In  reality, of course, the shear-stress gradient starts to decrease appreciably at 
the points a, and falls to nearly zero at  the points 0, so that the join between 
the two parts of the shear-stress profile is smooth and occurs at a rather smaller 
shear stress than the join in the idealized profile shown here. 
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FIGURE 9. Direct measurements of pressure gradient (two runs). 

3.3. T h e  turbulent motion 

The turbulent motion has not been studied in detail because the only region of 
interest is the wall equilibrium layer, which is rather too thin for useful measure- 
ments of shear-stress gradient to be possible. Such measurements would amount 
to a test of the theoretical square-root profile from which the shear-stress gradi- 
ents have already been deduced, and this test can be done more conveniently in 
a thicker retarded boundary layer. The u-component r.m.s. intensity (figure 10) 
on a given streamline in the outer part of the layer rises slightly as the separation 
point is approached, but, judging from the frequency spectra (figure l l ) ,  the 
increase is due to low-frequency unsteadiness resulting from modulation of the 
displacement thickness and the separation position by the turbulent eddies. 
Kistler (1964) has found appreciable increases in the low-frequency part of the 
spectrum of the surface pressure fluctuations near a separation point which 
he ascribed to the same cause. He observed that the fluctuations were not 
correlated right across the span of the step, and therefore rejected the possibiIity 
of any acoustic resonance or other instability of the flow. 
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The maximum u-component r.m.8. intensity a t  x' = 2iin. occurs a t  about 
0-4 in. from the surface and is only 0.09 of the reference velocity; nearer the sur- 
face, the rate of production of turbulent energy is less than in zero pressure 
gradient because both the mean velocity gradient and the shear stress are less. 
Therefore, very high intensities of turbulence (referred to the initial free-stream 
velocity, say) do not occur in step-induced separation although the turbulent 
fluctuations reach a high proportion of the local mean velocity near the separation 
points, and there is enough low-frequency unsteadiness to make reading a mano- 
meter difficult. The high intensities found in less rapidly retarded layers result 
from increased shear stress and turbulence production in the central part of the 
layer, and we have already seen that such increased shear stresses do not occur 
in the present case. 
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FIGURE 10. R.m.s. u-component intensity plotted against stream function. 

4. Methods for the prediction of separation 
Townsend (1962) has proposed as a criterion of separation a unique relation 

between (v/& (dpldx) and 2K2 (p -po)/r0, where po and ro are the values in the 
initial boundary layer. Like the rest of the Stratford-Townsend work, this rela- 
tion applies only to rapid retardation following a region of constant pressure, 
but an analogous relation could be derived for any known initial state. 'Rapid 
retardation' means that the stress gradient near the wall, which lies somewhere 
between +dp/dx and dpldx in most cases, shall be large compared with the initial 
stress gradients in the outer layer, which are at most slightly larger than ro/6. 
This is a conservative requirement because the stress gradients in the outer layer 
are reduced by thickening of the boundary layer. aplax 3 ro/8 may be written as 

or 
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in the present case. (Here and in the rest of the discussion of Townsend’s work 
we follow his use of kinematic quantities.) As seen in figure 12, the condition is 
well satisfied, except, of course, for large x‘, the inequality amounting to a factor 
of 20 in the region of maximum pressure gradient. 
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Townsend’s separation criterion is also shown in figure 12 and predicts sepa- 
ration at  about x’ = 2-25in., compared with X I  = 2.6-2.7in. from the surface- 
tube measurements. Townsend’s criterion agrees much better with the measure- 
ments of Schubauer & Klebanoff (conducted at much higher Reynolds number 
and with less rapid retardation-a factor of only five in the inequality above- 
and, for both reasons, with a higher value of ( p  - p o ) / F o ) ,  but it is difficult to see 
any reason why the results should be poorer in the present case, except that the 
criterion depends on the equality of shear stress and pressure gradient a t  sepa- 
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ration so that the ordinate of figure 12 should really be (v/& (&/ay). If the ex- 
perimental values of h / a y  are used to replot the points at X' = 3 in. and x' = 2 i  in. 
they are nearer the line which indicates separation, but the apparent trend is 
such that the predicted separation point would still be well downstream of the 
actual position. The reduction of pressure gradient prior to the theoretical 
separation point is roughly the factor of five suggested by Townsend but the 
reduction prior to the actual separation point is only about 2.7: 1. However, a 
more reasonable view to take is that Townsend's criterion predicts the separa- 
tion point to within about 5 %  of the length of the region of strong adverse 
pressure gradient, which is a highly satisfactory result. 

0 10 20 30 40 50 
%IY2 

FIGURE 12. Townsend's separation criterion. 

Since it is in most cases desired to avoid separation rather than to predict it, 
it  would be very useful to have a criterion of imminent or inevitable separation. 
Townsend (1962) suggests that the final descent to separation starts when the 
effect of a reduction in pressure gradient (strictly stress gradient) is to increase 
the contribution of the equilibrium layer to the displacement thickness, thus 
causing a further relief of pressure gradient and a further increase in thickness 
until the boundary layer separates. The contribution of the equilibrium layer to 
8, may be written as 

As, = ~ " ( l - U / U J d y  0 = ys-$s/ul, 

where ys = ( T ~  - 7,)/a, suffix s denoting the edge of the equilibrium layer. Now 
a change in the stress gradient a: does not produce an instantaneous increase in 
$s-the edge of the equilibrium layer does not jump from one streamline to 
another-so a a 1 ia7, 

aa: 1-aa:Ys- 0 w a aa, 
- A s  -- - - ( 7 - 7 )  
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a a  at 
ro aa ax 

or, putting r, = t2r0, 
--ASl = -2 ta- - (1- t2) ,  

where atjaa is evaluated a t  constant Ul. Now (at/aa),l can be obtained from 
figure 5 of Townsend (1962) by differentiating an analytical fit to the curves of 
cJy2 against t for different values of log,rt/av which are given in that figure. 
We choose c,/y2 = (2.37 - 0-165(5t - l)2}{logert/av}*, 

where y = rt /K U,. On substituting values of at/aa so obtained into the expres- 
sion for a(ASJ/aa, we find that the latter is negative nearly everywhere in the 
( t ,  c,) plane except for t very near unity (very near the start of the adverse pres- 
sure gradient) or t < 0.2 (7, < 0.04r0 which is virtually the separation point). 
Thus the layer will start the final and irrevocable descent to separation only when 
the ‘instantaneous ’ increase in displacement thickness, caused by the rapid 
response of the equilibrium layer to a decrease in pressure gradient, outweighs 
the decrease in rate of growth of displacement thickness which is the response of 
the layer as a whole. It is difficult to derive any useful criterion based on this. 

This suggestion of Townsend’s has been explored and discussed at some 
length because he used it to reinforce an argument that the pressure rise to 
separation could be related to the ‘inviscid’ pressure gradient just upstream of 
separation. We now derive what amounts to such a relation by using the Strat- 
ford-Townsend model with the sole additional assumption that the edge of the 
equilibrium layer remains on the same streamline, This enables us to relate the 
coilditions at  a station fairly near separation to the pressure rise between that 
station and the separation point itself. The practical use of this relation would 
be in cases where a conventional calculation method had been used to predict 
the development of the boundary layer up to a station where the dimensionless 
pressure gradient (Sl/rw) (dp/dx), or the form parameter H were increasing fairly 
rapidly so that the conventional method was becoming unreliable. The relation 
would immediately indicate what additional (rapid) pressure rise could be with- 
stood, and whether separation would occur before the trailing edge of the aero- 
foil or the end of the diffuser. The position of separation could not be predicted 
very accurately by using the relation, because the ‘ inviscid ’ pressure distribution 
is modified if separation occurs. Clearly the approximation that the equilibrium 
layer spreads no further into the outer flow means that the additional pressure 
rise must be even more rapid than that required by the main theory, but it is 
probably sufficient that the boundary layer at  the upstream station shall appear 
to be in some danger of separation. Denoting conditions on the dividing stream- 
line at  the upstream station by suffix s and at separation by suffix ss, we have 

neglecting the small additive constant. ass yss = rs by conservation of shear stress. 
Therefore 

by Bernoulli’s equation, if ys and yss lie on the same streamline; Ap is the pressure 
rise between the upstream station and separation. 
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ZAp/p = U: - 4rS/K,2p. Finally, we have 

The quantity on the right-hand side, evaluated a t  the edge of the equilibrium 
layer, represents the sudden pressure rise that the boundary layer can withstand. 
Because in practice the equilibrium layer continues to spread outwards, the figure 
is a conservative one. Except very near separation, the first term is much the 
larger so that the values of rs need not be very accurate. In the present experiment 
we do not have a very accurate idea of the position of the edge of the equilibrium 
layer, but it seems as if the assumption of the theory, that the edge remains on 
a given streamline, is satisfied over most of the retarded region, so we may take 
it as being at $ = 0.05 in. We can now calculate the overall pressure rise to sepa- 
ration from data a t  any station as 

(cp)max = cp  + ( & l u o ) 2 - 4 ~ o / ( K k ~ , 2 ) .  

The value of cpmax, which is the same at  each station since Bernoulli’s equation 
holds on the streamline $ = 0*05in., is 0.40 compared with the actual value 
of about 0.35. This is a tolerable value and would be improved if we used the 
actual values of ys: for x’ = 3 in., obtaining ys from figure 4 (d) we get 

( c ~ ) ~ ~ ~  = 0.375. 

Alternatively, a smaller value of $s could be justified by the data in figure 8 ( b ) .  
$s = 0.05 in. was chosen independently. 

A comparison with Schubauer & Klebanoff’s results, deducing plausible 
values of y8 from the square-root region in their measured velocity profiles 
and reducing their measured values of r by the factor of 1.5 suggested by Town- 
send, gives the extra pressure rise to separation (cp at separation = 0.52) shown 
in table 1. 

z(ft.) 20 22.5 24.5 25.4 

Ys (in.) 0.2” 0.3 1.5 2.0 

4 c v  (actual) 0.35 0.17 0-05 0.01 
4c, (calculated) 0-31 0.20 0.07 0.04 

* Estimated from measured shear stress profile. 
TABLE 1.  

The need for a reasonably accurate value of ys means that the method used to 
calculate the early development of the boundary layer must be one which 
predicts the actual velocity or shear-stress profiles. Most methods do this in 
principle because they are based on a one-parameter family of profiles, but there 
is a need for improved methods based on modern ideas of the flow in the boundary 
layer (see Rradshaw et al. 1966). 

The effect of Reynolds number on the pressure rise for a boundary layer with 
a given value of the velocity-defect profile parameter G can be calculated on the 
assumption that y,/6 is independent of Reynolds number, which should be very 
nearly true if ys is outside the viscous sublayer. Taking 

U/U, = (y/S)l’n 
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(a more sophisticated profile family could be used), we have 
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and 

If we take G = 6.8 (the value in zero pressure gradient) and yJ6 = 0.08, 
Ap/&pU? changes from 0.355 at cf = 0.0033 (as in the present experiment) to 0.450 
at  cf = 0.0023 (as in Schubauer & Klebanoffs experiment). Barnes (1965) found 
that the pressure distributions ahead of a normal fence were closely identical, 
for given 6Jh, in two tests for which the Reynolds number differed by a factor 
of 1.5. Since this represents barely 10 yo change in cf the calculations above sug- 
gest that the pressure coefficient at separation would change by only about 0.03. 

Recently, Goldschmied (1965) has proposed a separation criterion which has 
some affinity with the one suggested here but which seems less soundly based 
because it rests on a very questionable assumption about the total pressure at  
the edge of the viscous sublayer. 

Since this paper was submitted for publication we have seen the thesis of 
Taulbee (1 964) who performed a similar experiment at even lower Reynolds 
numbers (U,S,/v = 650 or 1900 at the start of the pressure rise, the boundary 
layer in the latter case having been artificially thickened). Taulbee’s results 
are generally similar to ours, but his values for the pressure coefficient at  sepa- 
ration are noticeably larger than in the present work, being about 0-5 for con- 
ditions comparable to those of figure 2. This pressure rise is nearly as large as that 
attained by Schubauer & Klebanoff’s boundary layer at a very much higher 
Reynolds number and with a less rapid pressure rise. It does not seem to be 
very plausible. Taulbee’s artificially thickened boundary layer was stated to 
have a maximum value of shear stress of about 1.27, within the layer. The other 
boundary layer, which was tripped by a spanwise row of saw teeth protruding 
&in. into the flow, was assumed to be in a normal state because its thickness 
was the same as that of an ideal boundary layer becoming turbulent at the 
leading edge, but its Reynolds number was so low that it may have retained 
traces of disturbances originating in the transition region. 

5. Conclusions 
The effect of the additional stress gradients generated by the adverse pressure 

gradient in the flow up a step is always confined to within one-eighth of the 
boundary-layer thickness from the surface; total-pressure changes outside this 
region are due entirely to the stress gradients existing in the unperturbed 
boundary layer which are small in comparison. The flow up a step is a good test 
case for the Stratford-Townsend theory of separation. 

The separation point is only 1-2 step heights upstream of the step for 
6,/h = 0.086 (S/h = &) and 6,Ur,,/v = 3100. 

The increase in turbulent intensity up to separation is small, and attributable 
to low-frequency unsteadiness of the separation point. 

9 Fluid Mech. 27 
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The Townsend criterion predicts the separation point fairly accurately, al- 
though agreement is poorer than in the comparison with Schubauer & Klebanoff’s 
experiment. The general assumptions and predictions of the Stratford-Townsend 
theory are in good agreement with experiment. It is pointed out that the theory 
could be extended to any initial boundary layer (and not merely a constant- 
pressure boundary layer) and could then be used to predict the final stages of 
decline to separation after an extended region of adverse pressure gradient (in 
which a conventional calculation method would be used). 

If the boundary layer a t  a given station is sufficiently near separation for the 
edge of the equilibrium layer to remain on the same streamline until separation, 
then the pressure rise between the given station and separation is +p( Ui  - 47,/ 
pK:) where U, and rs are the velocity and shear stress a t  the edge of the equilibrium 
layer a t  the upstream station. This quantity is a simple criterion of imminence of 
separation; once the development of the boundary layer on an aerofoil has been 
calculated, by a conventional method, to a station where it appears to be in some 
danger of separation, it can be seen immediately whether the pressure rise to 
the trailing edge can, in fact, be surmounted. In  the case of flow up a step sepa- 
ration is predicted a t  a pressure coefficient of 0.38-0.40 instead of 0.35; the chief 
cause of inaccuracy is the difficulty of identifying the edge of the equilibrium 
layer. In  the case of Schubauer & Klebanoff’s aerofoil the pressure coefficient 
a t  separation is predicted to  about & 0.03. 

The work described in this paper forms part of the research programme carried 
out in the Aerodynamics Division of the National Physical Laboratory for the 
Ministry of Aviation. The paper is published by permission of the Director, 
NPL. 
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